4,081 research outputs found

    The two gap transitions in Ge1x_{1-x}Snx_x: effect of non-substitutional complex defects

    Full text link
    The existence of non-substitutional β\beta-Sn defects in Ge1x_{1-x}Snx_{x} was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that although most Sn enters substitutionally (α\alpha-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration ( β\beta-Sn ), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present our electronic structure calculation for Ge1x_{1-x}Snx_{x}, including substitutional α\alpha-Sn as well as non-substitutional β\beta-Sn defects. To include the presence of non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Jenkins and Dow, Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β\beta-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1x_{1-x}Snx_{x} as a function of the total Sn-concentration: namely from an indirect to a direct gap, first, and the metallization transition at higher xx. They also highlight the role of β\beta-Sn in the reduction of the concentration range which corresponds to the direct-gap phase of this alloy, of interest for optoelectronics applications.Comment: 11 pages, 9 Figure

    Non-substitutional single-atom defects in the Ge_(1-x)Sn_x alloy

    Full text link
    Ge_(1-x)Sn_x alloys have proved difficult to form at large x, contrary to what happens with other group IV semiconductor combinations. However, at low x they are typical examples of well-behaved substitutional compounds, which is desirable for harnessing the electronic properties of narrow band semiconductors. In this paper, we propose the appearance of another kind of single-site defect (βSn\beta-Sn), consisting of a single Sn atom in the center of a Ge divacancy, that may account for these facts. Accordingly, we examine the electronic and structural properties of these alloys by performing extensive numerical ab-initio calculations around local defects. The results show that the environment of the β\beta defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of metallic white tin and its segregation, as found in amorphous samples. Using the information stemming from these local defect calculations, we built a simple statistical model to investigate at which concentration these β\beta defects can be formed in thermal equilibrium. These results agree remarkably well with experimental findings, concerning the critical concentration above which the homogeneous alloys cannot be formed at room temperature. Our model also predicts the observed fact that at lower temperature the critical concentration increases. We also performed single site effective-field calculations of the electronic structure, which further support our hypothesis.Comment: 12 pages, 1 table, 16 figure

    Rangeland Degradation in Mongolia – Using State and Transition Models to Help Understand Rangeland Dynamics

    Get PDF
    Rangeland degradation and soil erosion pose constant challenges to the management of natural resources in Mongolia. Large increases in livestock numbers since the early 1990s, together with increasing temperatures and higher frequency of extreme weather events have led to widespread degradation of rangeland resources, to the extent that today, nearly 57% of rangelands in Mongolia are considered degraded to some degree. New ways of understanding the dynamics of rangeland ecosystems and guidelines to conserve healthy and productive rangelands are urgently needed. The application of State and Transition Models (STMs) in ecosystem management has shown promise to understand the mechanistic processes behind rangeland degradation and to suggest appropriate interventions for maintaining the health or restoring degraded rangelands. The Green Gold-Animal Health project funded by the Swiss Development Agency in Mongolia was the first initiative aimed at developing and applying STMs to Mongolian rangeland management. Here we describe the development of STMs for the most common rangeland types in Mongolia, including the definition of reference and alternative rangeland states and “recovery classes”, based on the timelines and management actions needed to recover a reference state. Our results show that STMs are effective tools for analysing and interpreting rangeland health monitoring data and provide a scientific basis for planning and implementing resilience-based rangeland management. Furthermore, STMs facilitate synthesis of available knowledge and help identify areas where more information is needed. In summary, STMs have the potential to serve as a valuable tool for better communication of rangeland health assessments and decision making to facilitate appropriate management

    Influence of Maturity and Vineyard Location on Free and Bound Aroma Compounds of Grapes from the País Cultivar

    Get PDF
    Some of the volatile compounds present in grapes give wine is its unique and genuine characteristics.  “Terroir” and berry maturity are considered to be the main influences on the expression of these characteristics. This work was undertaken to establish the specific characteristics that define Vitis vinifera cv. País, based on its aromatic profile and free and bound compounds (glycosides), and to assess the effects of location and maturity. Free and bound volatile compounds presented significant differences in the three locations studied. The total amount of free alcohols, acids and ketones depended on the location. During ripening, the amount of aroma precursors increased in all chemical groups in every location studied, and they were found mainly in the skins. With reference to free volatile compounds, it was found that cis-2-hexenol could be a good candidate to assess maturity, and that terpene content seemed to be strongly related to the vineyard location and cultivar conditions. Also, data analysis showed that the free aroma profile seemed to be influenced more by the maturity of the grapes and the bound aroma fraction more by the location

    State and Transition Models in Space and Time – Using STMs to Understand Broad Patterns of Ecosystem Change in Iceland

    Get PDF
    Managing ecological systems sustainably requires a deep understanding of ecosystem structure and the processes driving their dynamics. Conceptual models can lead to improved management, by providing a framework for organizing knowledge about a system and identifying the causal agents of change. We developed state-and-transition models (STMs) to describe landscape changes in Iceland over three historical periods with different human influence, from pre-settlement to present days. Our models identified the set of possible states, transitions and thresholds in these ecosystems and their changes over time. To illustrate the use of these models for predicting and improving management interventions, we applied our present-day STM to a case study in the central highlands of Iceland and monitored ecosystem changes within an ongoing field experiment with two management interventions (grazing exclusion and fertilization) in areas experiencing contrasting stages of degradation. The results of the experiment broadly align with the predictions of the model and underscore the importance of conceptual frameworks for adaptive management, where the best available knowledge is used to continuously refine and update the models

    A Computer Application to Predict Adverse Events in the Short-Term Evolution of Patients With Exacerbation of Chronic Obstructive Pulmonary Disease

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is a common chronic disease. Exacerbations of COPD (eCOPD) contribute to the worsening of the disease and the patient’s evolution. There are some clinical prediction rules that may help to stratify patients with eCOPD by their risk of poor evolution or adverse events. The translation of these clinical prediction rules into computer applications would allow their implementation in clinical practice. Objective: The goal of this study was to create a computer application to predict various outcomes related to adverse events of short-term evolution in eCOPD patients attending an emergency department (ED) based on valid and reliable clinical prediction rules. Methods: A computer application, Prediction of Evolution of patients with eCOPD (PrEveCOPD), was created to predict 2 outcomes related to adverse events: (1) mortality during hospital admission or within a week after an ED visit and (2) admission to an intensive care unit (ICU) or an intermediate respiratory care unit (IRCU) during the eCOPD episode. The algorithms included in the computer tool were based on clinical prediction rules previously developed and validated within the Investigación en Resultados y Servicios de Salud COPD study. The app was developed for Windows and Android systems, using Visual Studio 2008 and Eclipse, respectively. Results: The PrEveCOPD computer application implements the prediction models previously developed and validated for 2 relevant adverse events in the short-term evolution of patients with eCOPD. The application runs under Windows and Android systems and it can be used locally or remotely as a Web application. Full description of the clinical prediction rules as well as the original references is included on the screen. Input of the predictive variables is controlled for out-of-range and missing values. Language can be switched between English and Spanish. The application is available for downloading and installing on a computer, as a mobile app, or to be used remotely via internet. Conclusions: The PrEveCOPD app shows how clinical prediction rules can be summarized into simple and easy to use tools, which allow for the estimation of the risk of short-term mortality and ICU or IRCU admission for patients with eCOPD. The app can be used on any computer device, including mobile phones or tablets, and it can guide the clinicians to a valid stratification of patients attending the ED with eCOPD.Fondo de Investigación Sanitaria (PI 06\1010, PI06\1017, PI06\714, PI06\0326, PI06\0664) Departamento de Salud del Gobierno Vasco (2012111008) Departamento de Educación, Política Lingüística y Cultura del Gobierno Vasco (IT620-13) Ministerio de Economía y Competitividad del Gobierno Español and FEDER (MTM2013-40941-P and MTM2016-74931-P) the Research Committee of the Hospital Galdakao the thematic networks -REDISSEC (Red de Investigación en Servicios de Salud en Enfermedades Crónicas) - of the Instituto de Salud Carlos III

    COPD classification models and mortality prediction capacity

    Get PDF
    Our aim was to assess the impact of comorbidities on existing COPD prognosis scores. Patients and methods: A total of 543 patients with COPD (FEV1 < 80% and FEV1/ FVC <70%) were included between January 2003 and January 2004. Patients were stable for at least 6 weeks before inclusion and were followed for 5 years without any intervention by the research team. Comorbidities and causes of death were established from medical reports or information from primary care medical records. The GOLD system and the body mass index, obstruction, dyspnea and exercise (BODE) index were used for COPD classification. Patients were also classified into four clusters depending on the respiratory disease and comorbidities. Cluster analysis was performed by combining multiple correspondence analyses and automatic classification. Receiver operating characteristic curves and the area under the curve (AUC) were calculated for each model, and the DeLong test was used to evaluate differences between AUCs. Improvement in prediction ability was analyzed by the DeLong test, category-free net reclassification improvement and the integrated discrimination index. Results: Among the 543 patients enrolled, 521 (96%) were male, with a mean age of 68 years, mean body mass index 28.3 and mean FEV1% 55%. A total of 167 patients died during the study follow-up. Comorbidities were prevalent in our cohort, with a mean Charlson index of 2.4. The most prevalent comorbidities were hypertension, diabetes mellitus and cardiovascular diseases. On comparing the BODE index, GOLDABCD, GOLD2017 and cluster analysis for pre-dicting mortality, cluster system was found to be superior compared with GOLD2017 (0.654 vs 0.722, P=0.006), without significant differences between other classification models. When cardiovascular comorbidities and chronic renal failure were added to the existing scores, their prognostic capacity was statistically superior (P<0.001). Conclusion: Comorbidities should be taken into account in COPD management scores due to their prevalence and impact on mortalit

    From Bare to Birch: Large-Scale Ecosystem Restoration in Iceland

    Get PDF
    The case of Hekluskógar (meaning “Hekla woodlands”) in South Iceland examines how to transition from barren desertified land to a resilient and healthy woodland that can provide ecosystem services to the people in the area and beyond. The case provides a thorough description and background of the many components involved in the largest reforestation project in Europe as of 2018. The area surrounding Mount Hekla, one of Iceland’s most active volca

    Hierarchically coupled ultradian oscillators generating robust circadian rhythms

    Get PDF
    Ensembles of mutually coupled ultradian cellular oscillators have been proposed by a number of authors to explain the generation of circadian rhythms in mammals. Most mathematical models using many coupled oscillators predict that the output period should vary as the square root of the number of participating units, thus being inconsistent with the well-established experimental result that ablation of substantial parts of the suprachiasmatic nuclei (SCN), the main circadian pacemaker in mammals, does not eliminate the overt circadian functions, which show no changes in the phases or periods of the rhythms. From these observations, we have developed a theoretical model that exhibits the robustness of the circadian clock to changes in the number of cells in the SCN, and that is readily adaptable to include the successful features of other known models of circadian regulation, such as the phase response curves and light resetting of the phase
    corecore